Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Mater Chem B ; 12(19): 4533-4552, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38477504

ABSTRACT

Polyetheretherketone (PEEK), as a high-performance polymer, is widely used for bone defect repair due to its homogeneous modulus of elasticity of human bone, good biocompatibility, excellent chemical stability and projectability. However, the highly hydrophobic surface of PEEK is biologically inert, which makes it difficult for cells and proteins to attach, and is accompanied by the development of infections that ultimately lead to failure of PEEK implants. In order to further enhance the potential of PEEK as an orthopedic implant, researchers have explored modification methods such as surface modification by physical and chemical means and the addition of bioactive substances to PEEK-based materials to enhance the mechanical properties, osteogenic activity and antimicrobial properties of PEEK. However, these current modification methods still have obvious shortcomings in terms of cost, maneuverability, stability and cytotoxicity, which still need to be explored by researchers. This paper reviews some of the modification methods that have been used to improve the performance of PEEK over the last three years in anticipation of the need for researchers to design PEEK orthopedic implants that better meet clinical needs.


Subject(s)
Benzophenones , Biocompatible Materials , Ketones , Polyethylene Glycols , Polymers , Prostheses and Implants , Surface Properties , Polymers/chemistry , Polymers/pharmacology , Benzophenones/chemistry , Ketones/chemistry , Ketones/pharmacology , Humans , Polyethylene Glycols/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Animals
2.
Bioact Mater ; 27: 546-559, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37397628

ABSTRACT

Currently, many cancer patients with bone defects are still threatened by tumor recurrence, postoperative bacterial infection, and massive bone loss. Many methods have been studied to endow bone implants with biocompatibility, but it is difficult to find an implant material that can simultaneously solve the problems of anticancer, antibacterial and bone promotion. Here, a multifunctional gelatin methacrylate/dopamine methacrylate adhesive hydrogel coating containing 2D black phosphorus (BP) nanoparticle protected by polydopamine (pBP) is prepared by photocrosslinking to modify the surface of poly (aryl ether nitrile ketone) containing phthalazinone (PPENK) implant. The multifunctional hydrogel coating works in conjunction with pBP, which can deliver drug through photothermal mediation and kill bacteria through photodynamic therapy at the initial phase followed by promotion of osteointegration. In this design, photothermal effect of pBP control the release of doxorubicin hydrochloride loaded via electrostatic attraction. Meanwhile, pBP can generate reactive oxygen species (ROS) to eliminate bacterial infection under 808 nm laser. In the slow degradation process, pBP not only effectively consumes excess ROS and avoid apoptosis induced by ROS in normal cells, but also degrade into PO43- to promote osteogenesis. In summary, nanocomposite hydrogel coatings provide a promising strategy for treatment of cancer patients with bone defects.

3.
Small Methods ; 7(6): e2201593, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36895071

ABSTRACT

Regulating the ranking of polymer in triboelectric series over a wide range is of great help for material's selection of triboelectric nanogenerators (TENGs). Herein, fluorinated poly(phthalazinone ether)s (FPPEs) with tunable molecular structure and aggregate structure are synthesized by co-polycondensation, while the large positive ranking shift in the triboelectric series can be achieved by introducing phthalazinone moieties with strong electron donating capability. FPPE-5, which includes abundant phthalazinone moieties, is more positive than all of the previously reported triboelectric polymers. Hence, the regulating range of FPPEs in this work updates a new record in triboelectric series, which is wider than that of previous works. A peculiar crystallization behavior, capable of trapping and storing more electrons, has been observed in FPPE-2 with 25% phthalazinone moieties. Correspondingly, FPPE-2 is more negative than FPPE-1 without a phthalazinone moiety, which is an unexpected shift against the common changing tendency in triboelectric series. With FPPEs films as the probing material, a tactile TENG sensor is applied to enable material identification via electrical signal polarity. Hence, this study demonstrates a strategy to regulate the series of triboelectric polymers by copolymerization using monomers with distinct electrification capabilities, where both the monomer ratio and the peculiar nonlinear behavior can control triboelectric performance.

4.
ACS Appl Mater Interfaces ; 15(1): 697-710, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36571180

ABSTRACT

Apatite coatings with high stability can effectively improve the surface bioactivity and osteogenic activity of implant materials. In clinical practice, the ability of apatite coatings to bond with the substrate is critical to the effect of implants. Here, we propose a strategy to construct a three-dimensional (3D) nanoporous structure on the surface of a poly(phthalazinone ether nitrile ketone) (PPENK) substrate and introduce a polydopamine (PDA) coating with grafted phosphonate groups to enhance the overall deposition of a bone-like apatite coating in the 3D nanoporous structure during mineralization. This method leads to a mechanical interlocking between the apatite coating and the substrate, which increases the stability of the apatite coating. The apatite coating confers a better bioactive surface to PPENK and also promotes osteogenic differentiation and adhesion of MC3T3-E1 osteoblasts in vitro. The samples are then implanted into rat femurs to characterize in vivo osseointegration. Micro-CT data and histological staining of tissue sections reveal that PPENK with a stable apatite coating induces less fibrous capsule formation and no inflammatory response and promotes osteogenic differentiation and bone-bonding strength. This enhances the long-term use of PPENK implant materials and shows great potential for clinical application as orthopedic implants.


Subject(s)
Apatites , Osseointegration , Rats , Animals , Osteogenesis , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Prostheses and Implants , Dental Materials/pharmacology , Surface Properties , Titanium/chemistry
5.
Int J Biol Macromol ; 218: 639-653, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35872313

ABSTRACT

As a hydrolytic product of collagen, gelatin is a polypeptide of biological origin. Gelatin hydrogels emerge as promising material candidates for traditional dressings due to good biocompatibility and the ability to keep wounds moist. However, it is difficult to simultaneously achieve gelatin hydrogel with robust mechanical property for long-term usage, reliable tissue adhesion, self-healing and antibacterial properties. Herein, we propose a simply synthesized strategy of a multifunctional gelatin hydrogel dressing, which is constructed by conjugating a newly synthesized 2-(4'-aldehydephenyl)-4-(2',3',4'-trihydroxyphenyl)-2,3-phthalazine-1(2H)-one (THPZB) to gelatin with Schiff base and chelating with Fe3+ ions (termed G/THPZB/Fe hydrogel). The twisted structure of phthalazinone in THPZB leads to entanglement of gelatin molecular chains, which resolves the stiffness-toughness conflict of the hydrogel. Furthermore, the strong tissue adhesion and fast self-healing capability mainly originate from the hydrogen bonding of the pyrogallol in THPZB. In vitro study shows that the hydrogels possess good biocompatibility with L929 cells, hemostatic and antibacterial activity. In the rat model of skin infection, the hydrogel dressing not only have no adverse effects on vital organs, but also can effectively promote wound healing of bacterial infection. Considering that it has multiple functions, G/THPZB/Fe hydrogel can be used as a promising wound dressing for biomedical applications.


Subject(s)
Hydrogels , Urochordata , Adhesives/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bandages , Gelatin/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Rats , Tissue Adhesions
6.
Macromol Biosci ; 21(11): e2100262, 2021 11.
Article in English | MEDLINE | ID: mdl-34449122

ABSTRACT

Bone-like apatite is a promising coating of poly(ether ether ketone) (PEEK) for bone implantation. Poly(aryl ether nitrile ketone) containing phthalazinone moiety (PPENK) is a novel alternative for its easy synthesis. Here, chitosan/gelatin hybrid hydrogel coating is applied to induce the formation of apatite on the surface of PPENK substrate through biomineralization to improve its biocompatibility and osteogenic property. PPENK possessing allyl groups (PPENK-d) are synthesized and spin-coated on PPENK substrate to impart reactive groups. The hydrogel coating is prepared by the ultraviolet crosslinking of gelatin methacrylate (GelMA) and chitosan methacrylate (CSMA) on PPENK substrate. PPENK-d, GelMA, and CSMA are characterized by 1 H-NMR to confirm the designed structures. The presence of chitosan increases the chelation of calcium ions and thus induces the nucleation of apatite. The microstructural and compositional results reveal that the chitosan-containing hydrogel coating induced apatite coating yields a higher apatite quantity compared to the gelatin hydrogel coating. The apatite coatings on PPENK substrate promote the cytocompatibility and osteogenesis of MC3T3-E1 preosteoblasts in vitro.


Subject(s)
Apatites/chemical synthesis , Cell Differentiation , Chitosan/chemistry , Gelatin/chemistry , Hydrogels/pharmacology , Ketones/chemistry , Osteoblasts/cytology , 3T3 Cells , Animals , Cell Differentiation/drug effects , Hydrogels/chemistry , Mice , Osteogenesis/drug effects
7.
Macromol Biosci ; 21(7): e2100078, 2021 07.
Article in English | MEDLINE | ID: mdl-34146384

ABSTRACT

Tissue adhesion to bone implant and osteoblastic differentiation are the key factors to achieve poly(aryl ether ketone) (PAEK) implant osseointegration. However, physical interaction of implant with tissue and hydroxyapatite coating suffers from slow implant tissue integration and lack of long-term stability. In this study, a novel poly(phthalazinone ether sulfone ketone) containing allyl groups (APPBAESK) is coated onto PPBESK sheet for reacting with the allyl groups of the hydrogel coating to enhance its stability. N-Succinimidyl (NHS)-ester activated group and nano-hydroxyapatite (nano-HA) are introduced into the hydrogel synthesized from gelatin methacrylate (GelMA) and acrylic acid to construct a nanocomposite hydrogel coating on PPBESK which is a promising PAEK implant material. The hydrophilicity of the PPBESK sheet is improved by the hydrogel coating. The chemical components of the nanocomposite hydrogel coating are confirmed by X-ray photoelectron spectroscope, Attenuated total reflection infrared, and X-ray powder diffraction. The tissue shear adhesion strength of the hydrogel coating toward pig skin is enhanced due to the synergism of NHS-ester activated group and nano-HA. The osteogenic differentiation of MC3T3-E1 preosteoblasts is promoted by nano-HA in nanocomposite hydrogel coating. Therefore, the bifunctional nanocomposite hydrogel coating provides a great application prospect in the surface modification of PAEK implants in bone tissue engineering.


Subject(s)
Durapatite , Ketones , Animals , Durapatite/pharmacology , Ether , Ketones/pharmacology , Nanogels , Osteogenesis , Swine , Tissue Adhesions
8.
Colloids Surf B Biointerfaces ; 194: 111173, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32563919

ABSTRACT

Poly(ether ether ketone) (PEEK) is a polyaryletherketone commonly used for bone implants, but it is difficult to modify the PEEK surface. Conversely, poly(phthalazinone ether nitrile ketone) (PPENK) is a polyaryletherketone whose surface can be modified by using chemical reactions owing to its cyano group. In this paper, two types of materials, P-BMP-2 and PH-BMP-2, were prepared by covalent immobilization and heparin binding of rhBMP-2 respectively to enhance the osteogenic activity of PPENK. X-ray photoelectron spectroscopy and water contact-angle measurement were used to demonstrate the hydrolysis of the cyano groups on PPENK, amine group grafting and immobilization of rhBMP-2. Immunohistochemical staining and evaluation of loading and release behaviour were used to demonstrate the existence of rhBMP-2 on PPENK surfaces. The biological activity of MC3T3-E1 preosteoblast cells on the samples were evaluated using cell adhesion, viability and proliferation tests. The genetic expression of genes associated with osteogenic activity was assessed by reverse transcription polymerase chain reaction. Based on the obtained in vitro experimental results, both P-BMP-2 and PH-BMP-2 exhibit good cytocompatibility and promote differentiation of MC3T3-E1 preosteoblast cells. In particular, the favourable biocompatibility can be obtained using the heparin-binding method.


Subject(s)
Bone Morphogenetic Protein 2 , Ketones , Osteogenesis , 3T3 Cells , Animals , Cell Differentiation , Ethers , Mice , Nitriles , Recombinant Proteins , Surface Properties
9.
Polymers (Basel) ; 11(2)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30960221

ABSTRACT

The properties of carbon fibre (CF) reinforced composites rely heavily on the fibre-matrix interface. To enhance the interfacial properties of CF/copoly(phthalazinone ether sulfone)s (PPBES) composites, a series of multiscale hybrid carbon fibre/graphene oxide (CF/GO) reinforcements were fabricated by a multistep deposition strategy. The optimal GO loading in hybrid fibres was investigated. Benefiting from the dilute GO aqueous solution and repeated deposition procedures, CF/GO (0.5%) shows a homogeneous distribution of GO on the hybrid fibre surface, which is confirmed by scanning electron microscopy, atomic force microscope, and X-ray photoelectron spectroscopy, thereby ensuring that its PPBES composite possesses the highest interlaminar shear strength (91.5 MPa) and flexural strength (1886 MPa) with 16.0% and 24.1% enhancements, respectively, compared to its non-reinforced counterpart. Moreover, the incorporation of GO into the interface is beneficial for the hydrothermal ageing resistance and thermo-mechanical properties of the hierarchical composite. This means that a mass production strategy for enhancing mechanical properties of CF/PPBES by regulating the fiber-matrix interface was developed.

10.
Membranes (Basel) ; 9(1)2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30609727

ABSTRACT

This paper discusses the effect of the chemical structure of sulfonated poly(aryl ether sulfone) on the performance of composite nanofiltration membranes. The composite nanofiltration membranes were fabricated by coating sulfonated poly(aryl ether sulfone) solution onto the top surface of poly(phthalazinone ether sulfone ketone) support membranes. Three kinds of sulfonated poly(aryl ether sulfone)s with different amounts of phthalazinone moieties, namely, sulfonated poly(phthalazinone ether sulfone) (SPPES), sulfonated poly(phthalazinone biphenyl ether sulfone) (SPPBES), and sulfonated poly(phthalazinone hydroquinone ether sulfone)s (SPPHES), were used as coating materials. The solvents used in preparing the coating solution were investigated and optimized. The separation properties, thermal stability, and chlorine resistance of composite membranes were determined. The structures and morphologies of membranes were characterized with FTIR and SEM, respectively. The membrane prepared from SPPES with more phthalazinone moiety groups showed high water flux and salt rejection. The salt rejection of composite membranes followed the order SPPES > SPPHES > SPPBES. The rejection of the three composite membranes decreased slightly with the solution temperature rising from 20 to 90 °C, while the composite membrane with SPPES as the active layer showed a higher increase in flux than others. The results indicate that SPPES composite membranes show better thermal stability than others.

11.
Molecules ; 23(7)2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29976883

ABSTRACT

Copoly(phthalazinone biphenyl ether sulfone) (PPBES) as a commercially available polyarylether is a promising orthopaedic implant material because its mechanical properties are similar to bone. However, the bioinert surface of polyarylether causes some clinical problems after implantation, which limits its application as an implant material. In this study, the surface of PPBES was modified by a biomineralization method of polydopamine-assisted hydroxyapatite formation (pHAF) to enhance its cytocompatibility. Polydopamine (PDA) coating, inspired by the adhesion mechanism of mussels, can readily endow PPBES with high hydrophilicity and the ability to integrate via the bone-like apatite coating. PPBES and PDA-coated PPBES were evaluated by scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle measurement. The water contact angles were reduced significantly after coating with PDA. PDA was successfully synthesized on PPBES and more PDA was obtained by increasing the temperature. Bone-like apatite on PPBES (apatite-coated PPBES) was confirmed by SEM and transmission electron microscopy (TEM). The cytotoxicity of pristine PPBES and apatite-coated PPBES were characterized by culturing of NIH-3T3 cells. Bone-like apatite synthesized by pHAF could further enhance cytocompatibility in vitro. This study provides a promising alternative for biofunctionalized PPBES with improved cytocompatibility for bone implant application.


Subject(s)
Coated Materials, Biocompatible/chemical synthesis , Durapatite/chemical synthesis , Hydroxyapatites/chemistry , Indoles/chemistry , Polymers/chemistry , Animals , Cell Survival/drug effects , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Durapatite/chemistry , Durapatite/pharmacology , Hydrophobic and Hydrophilic Interactions , Mice , Microscopy, Electron, Scanning , NIH 3T3 Cells , Osteogenesis , Photoelectron Spectroscopy , Surface Properties
12.
Yi Chuan ; 34(8): 1064-72, 2012 Aug.
Article in Chinese | MEDLINE | ID: mdl-22917912

ABSTRACT

The yield and quality of rice are directly impacted by floral organ development in rice. Understanding of the floral development mechanism will be useful in genetic improvement of yield and quality. In this study, a rice mutant palea degradation 2 (pd2) in an indica cultivar '8PW33' was obtained after 60Co γ-ray treatment. Analysis of the mutant showed that, compared to the wild type, plant height, total grain number per panicle, and sword leaf width were significantly increased, but the seed setting rate were significantly decreased. The florets of the mutant exhibited degraded palea and sickle-shaped tortuous lemma. Detail examination using scanning electron microscopy revealed that when epidermis of the vane and lemma were normal, epidermis of the palea were arranged tightly, which might result from degraded palea. Genetic analysis supported that this mutation phenotype was controlled by a single recessive gene. Polymorphic analysis of simple sequence repeat markers demonstrated that PD2 gene is located on chromosome 9. With a larger mapping population and more indel markers, we further mapped PD2 gene between 2 indel markers with a physical region of about 82 kb. Within this region, there is a cloned gene REP1 known to control rice palea development. By comparing the DNA sequences of REP1 from pd2 and 8PW33, in combination with the results of phenotypic analysis, we concluded that PD2 is an allele of REP1.


Subject(s)
Genes, Plant , Mutation , Oryza/genetics , Plant Proteins/genetics , Base Sequence , Chromosome Mapping/methods , Flowers/genetics , Flowers/growth & development , Molecular Sequence Data , Oryza/growth & development , Plant Epidermis/genetics
13.
Biomaterials ; 32(32): 8328-41, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21840593

ABSTRACT

Two water-soluble chitosan-graft-(polyethylenimine-ß-cyclodextrin) (CPC) cationic copolymers were synthesized via reductive amination between oxidized chitosan (CTS) and low molecular weight polyethylenimine-modified ß-cyclodextrin (ß-CD-PEI). The two polycations, termed as CPC1 and CPC2, were characterized by proton nuclear magnetic resonance spectroscopy, gel permeation chromatography, and elemental analysis. These polycations exhibited good ability to condense both plasmid DNA (pDNA) and small interfering RNA (siRNA) into compact and spherical nanoparticles. Gene transfection activity of both polymers showed improved performance in comparison with native CTS in HEK293, L929, and COS7 cell lines. Further investigation of the gene transfection mediated by CPC2/DNA complexes showed both time-dependent and dose-dependent in the tested cell lines, where the polymer showed higher level luciferase expression than commercially available branched PEI (25 kDa) under the condition of high dose or extended time. Gene silencing activity mediated by CPC2/siRNA against luciferase expression showed superior knockdown effect in HEK293 and L929 cell lines. In addition, both polymers exhibited much lower cytotoxicity than PEI (25 kDa) in HEK293, L929, and COS7 cell lines. More interestingly, the pendent ß-CD moieties of CPC copolymers allowed the supramolecular PEGylation though self-assembly of adamantyl-modified poly(ethylene glycol) with the ß-CD moieties. The supramolecular PEGylation of the polyplexes significantly improved their stability under physiological conditions. The supramolecular PEGylated polyplexes of CPC with pDNA showed decreased transfection efficiency in all tested cell lines. However, remarkably, the supramolecular PEGylated polyplexes with siRNA exhibited even higher silencing efficiency in HEK293 and L929 cells (up to 84%), comparable to commercial DharmaFECT. The interesting mechanism for the enhanced silencing efficiency was discussed. With the pendent ß-CD moieties on CTS chains, the system is expected to be further modified via inclusion complexation between ß-CD unit and guest molecules to serve as a multifunctional delivery system.


Subject(s)
Chitosan/chemistry , DNA/metabolism , Gene Transfer Techniques , Polyethylene Glycols/chemistry , Polyethyleneimine/chemistry , RNA, Small Interfering/metabolism , beta-Cyclodextrins/chemistry , Animals , Cell Death , Cell Line , Cell Survival , Chitosan/chemical synthesis , Electrophoretic Mobility Shift Assay , Gene Knockdown Techniques , Humans , Hydrodynamics , Luciferases/metabolism , Magnetic Resonance Spectroscopy , Mice , Microscopy, Atomic Force , Microscopy, Confocal , Particle Size , Plasmids/metabolism , Polyethylene Glycols/chemical synthesis , Polyethyleneimine/chemical synthesis , Static Electricity , Transfection , beta-Cyclodextrins/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...